Organization Dimension

Credits: Slides are based on previous presentations by Olivier Boissier, Rafael Bordini, Maiquel de Brito, Jomi F. Hübner, Jaime S. Sichman

JaCaMo Metamodel – Multi-Agent Concepts

Organization in MAS

Purposive supra-agent pattern of emergent or (pre)defined agents' cooperation, that could be defined by the designer or by the agents themselves.

Perspective on Organizations

Perspective on Organizations

Agent Centred Social Reasoning Swarms, AMAS, SASO Coalition formation Self-organisations ... Contract Net Protocol ... Organisation is observed. Organisation is observed. Implicitly programmed Coalition formation in Agents, Interactions, mechanisms programmed Environment. in Agents. Agents don't know Agents know about organisation about organisation AOSE TAEMS, STEAM, AGR MASE, GAIA, MESSAGE, ... MOISE+, OPERA, ... Organisation is **Organisation-Oriented** a design model. Programming of MAS It is hard-coded in Agents Organisation Centred Organisation Specification Local Representation Designer / Observer Observed Organisation Bottom-up... Top-down ___ Organisation Entity Boissier & Sichman, EASSS 2015

Organization Oriented Programming

Programming MAS = Programming **Agents** + Programming the **Environment** + Programming the **Organization**

Programming outside the agents using of organizational concepts to coordinating and regulating autonomous agents

Program = Specification

By changing the specification, we can change the MAS behavior

Organization Oriented Programming

Components

- 1. Programming language
- 2. Organization Management Infrastructure
- 3. Integration to agent architectures and to the environment

- Dimensions (Hübner et al. 2007)
 - Structural (i.e., Roles, Groups),
 - Functional (i.e., Organizational Goals, Missions, Schemes)
 - Normative (i.e., Norms with obligations, permissions, interdictions)
- Enable agent's autonomy w.r.t. organization (enforcement vs regimentation)
- Programming and representing the organization
 - make it accessible to the designers, the agents, the coordination and regulation management infrastructure (Hübner et al., 2010)

Structural Specification

- Specifies the structure of an MAS along three levels:
 - \circ Individual with Role
 - o Social with Link
 - Collective with Group
- Components:
 - Role: label used to assign rights and constraints on the behavior of agents playing it
 - Link: relation between roles that directly constrains the agents in their interaction with the other agents playing the corresponding roles
 - Group: set of links, roles, compatibility relations used to define a shared context for agents playing roles in it

Structural Specification Example

Functional Specification

• Specifies the expected behavior of an MAS in terms of **goals** along two levels:

• Collective with Scheme

o Individual with Mission

• Components:

• Goals:

- Achievement goal (default type). Goals of this type should be declared as satisfied by the agents committed to them, when achieved
- **Maintenance goal**. Goals of this type are not satisfied at a precise moment but are pursued while the scheme is running. The agents committed to them do not need to declare that they are satisfied

• Scheme: global goal decomposition tree assigned to a group

- Any scheme has a root goal that is decomposed into subgoals
- \odot <code>Missions</code>: set of coherent goals assigned to roles within norms

Functional Specification Example

<functional-specification> <scheme id="decide temp"> <goal id="voting"> <plan operator="sequence"> <goal id="announce options" /> <goal id="open voting" /> <goal id="ballot" ttf="10 seconds"> <argument id="voting machine id"</pre> /> </goal> <goal id="close voting" /> </plan> </goal> <mission id="mVote" min="1"> <goal id="ballot" /> </mission> <mission id="mController" min="1"> <goal id="announce options" /> <goal id="open voting" /> <goal id="close voting" /> </mission> </scheme> </functional-specification>

Normative Specification

- Explicit relation between the functional and structural specifications
- Permissions and obligations to commit to missions in the context of a role
- The normative specification makes explicit the normative dimension of a role

Normative Specification Example

Normative Specification

id	condition	role	relation	mission	time constraint	properties
n1		<u>assistant</u>	obligation	<u>mVote</u>		
n2		<u>controller</u>	obligation	mController		

<normative-specification>

<norm id="n1" type="obligation"
role="assistant" mission="mVote" />

<norm id="n2" type="obligation"
role="controller" mission="mController" />
</normative-specification>

Declarative Organization Programming

- Structural patterns (groups (r1:room), roles (assistant, controller), links)
- Coordination patterns (
 - o goal decomposition trees (voting, preferences, ballot, open_voting, close_voting)
 - missions (mAssistant, mVote, mController)
- Rights and duties (norms)

Organization Dynamics

In the context of Organization lifecycle

- Creation/Deletion of an Organization from an Organization specification
- Entrance/Exit of an agent
- Change of Organization specification

In the context of Organization structure life-cycle

- Creation/Deletion of a group
- Adoption/Leave of a role

In the context of Coordination activity life-cycle

- Creation/End of a schema
- Commitment/Release of a mission
- Change of goal state

In the context of Normative Regulation activity life-cycle

- Activation/De-activation of norms
- Fulfillment/Violation of norms
- Enforcement of norms

Organization Dynamics

Organization Goal Dynamics

waiting initial state

enabled goal pre-conditions are satisfied and scheme is well-formed

satisfied agents committed to the goal have achieved it **impossible** the goal is impossible to be satisfied

NOTE: goal state from the Organization point of view may be different of the goal state from the Agent point of view

Norm Dynamics

norm n : ϕ -> obligation(a, r, g, d)

φ: activation condition of the norm (e.g., play a role)
g: the goal of the obligation (e.g., commit to a mission)
d: the deadline of the obligation

Organization Management Infrastructure (OMI)

Managing – coordination, regulation – the agents' execution within organization defined in an organization specification

Organizational Artifacts in JaCaMo

- based on A&A and Moise
- agents create and handle organizational artifacts
- artifacts in charge of regimentations, detection and evaluation of norms compliance
- agents are in charge of decisions about sanctions
- distributed solution

GroupBoard Artifact

Observable Properties

- **specification**: the specification of the group in the OS
- **players**: a list of agents playing roles in the group. Each element of the list is a pair (agent x role)
- schemes: a list of scheme identifiers that the group is responsible for

GroupBoard Artifact

Operations

• adoptRole(role): the

agent executing this operation tries to adopt a role in the group

leaveRole(role)

- addScheme(schld): the group starts to be responsible for the scheme managed by the SchemeBoard schld
- removeScheme(schld)

SchemeBoard Artifact

Observable Properties

- **specification**: the specification of the scheme in the OS
- **groups**: a list of groups responsible for the scheme
- **players**: a list of agents committed to the scheme. Each element of the list is a pair (agent, mission)
- **goals**: a list with the current state of the goals
- **obligations**: list of obligations currently active in the scheme

SchemeBoard Artifact

Operations

- commitMission(mission) and leaveMission: operations to "enter" and "leave" the scheme
- goalAchieved(goal): defines that some goal is achieved by the agent performing the operation
- setGoalArgument(goal,argument, value): defines the value of some goal's argument

Organization Entity

smart-room.jcm

```
mas smart room {
      •••
     organisation smart house org : smart house.xml {
        group r1 : room {
            players: pal assistant
                     pa2 assistant
                     pa3 assistant
                     rc controller
            responsible-for: temp r1
         }
```

scheme temp r1: decide temp

Integrating Agent and Organization Dimensions

- Agents can interact with organizational artifacts as with ordinary artifacts by perception and action
- Agent integration provides "internal" tools for the agents to simplify their interaction with the organization:
 - maintenance of a local copy of the organizational state
 - o production of organizational events
 - \circ provision of organizational actions

Integrating Agent and Organization Dimensions

GroupBoard

```
joinWorkspace("ora4mas",04MWsp);
makeArtifact(
    "auction",
    "ora4mas.nopl.GroupBoard",
```

```
["auction-os.xml", auctionGroup],
```

```
GrArtId);
```

```
adoptRole(auctioneer);
```

focus(GrArtId);

• • •

SchemeBoard

```
makeArtifact(
```

```
"sch1",
    "ora4mas.nopl.SchemeBoard",
    ["auction-os.xml", doAuction],
    SchArtId);
focus(SchArtId);
addScheme(Sch);
commitMission(mAuctioneer)[artifact_id(SchArtId)];
```

Including organization-reasoning abilities into agents

```
+play(Ag,assistant,GrId) <- .send(Ag,tell,hello).
+goalState(_,close_voting,_,_,satisfied) <- ...</pre>
```

Including norm-reasoning abilities into agents

```
+obligation(Ag,Norm,achieved(_,Goal,_),DeadLine)
      : .my_name(Ag) & good(mood)
<- !Goal.</pre>
```


. . .

Integrating Environment and Organization Dimensions

- Changes in the state of the environment may **count-as** changes in the state of the organization (de Brito et al., 2015)
- This dynamic relation is a practical way of situating organizations in an environment, as happens for the agents, regulating some part of the environment (e.g., a traffic light at a crossroads) in a particular way and ruling it differently in other parts
- Organizations may empower the elements of the environment by allowing them to control and regulate actions or perception of the agents

Wrap-up: Organization Dimension

Wrap-up: Organization Dimension

- Model to specify global orchestration team strategy is defined at a high level
- Ensure agents follow some of the constraints specified by the organization
- Help agents to work together
- The organization is interpreted at runtime, it is not hardwired in the agents' code
- The agents can 'handle' the organization (i.e., their artifacts)
- It is suitable for open systems as no specific agent architecture is required
- Organization can easily be changed by the developers or by the agents themselves

References

- de Brito, M., Hübner, J. F., & Boissier, O. (2015). Bringing constitutive dynamics to situated artificial institutions. In *Proc. of 17th Portuguese Conference on Artificial Intelligence (EPIA 2015)*, LNCS, vol. 9273, pp. 624–637. Springer.
- Hübner, J. F., Boissier, O., Kitio, R., & Ricci, A. (2010). Instrumenting multi-agent organisations with organisational artifacts and agents: "Giving the organisational power back to the agents". *Journal of Autonomous Agents and Multi-Agent Systems*, 20(3):369–400.

