Introduction to Multi-Agent Oriented Programming

Credits: Slides based on previous presentations by Olivier Boissier, Andrei Ciortea, Jomi F. Hübner

- Complex system are systems composed of many components which may interact with each other and present non-trivial relationships between cause and effect
 - each effect > multiple causes
 - each cause > multiple effects
 - o feedback loops
 - o non-linear cause-effect chains
- Complex cyber-physical social systems
 - Smart cities
 - Smart grids
 - Manufacturing
 - Mobility systems

Distribution of data, knowledge, decision, intelligence

Distribution of data, knowledge, decision, intelligence

Autonomy, Loose coupling, Decentralization, Coordination

Distribution of data, knowledge, decision, intelligence

Autonomy, Loose coupling, Decentralization, Coordination

Openness, Long-livedness, Heterogeneity

Distribution of data, knowledge, decision, intelligence

Autonomy, Loose coupling, Decentralization, Coordination

Openness, Long-livedness, Heterogeneity

Adaptation, Resilience, Agility

Distribution of data, knowledge, decision, intelligence

Autonomy, Loose coupling, Decentralization, Coordination

Openness, Long-livedness, Heterogeneity

Adaptation, Resilience, Agility

Explainability

A set of autonomous agents interacting with each other within a shared environment, eventually under one to multiple organizations

A set of **autonomous agents** interacting with each other within a shared environment, eventually under one to multiple organizations

 Agents: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them (soft/hard)ware, (coarse/fine)-grain, (hetero/homo)geneous

A set of autonomous agents interacting with each other within a **shared environment**, eventually under one to multiple organizations

- Agents: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them (soft/hard)ware, (coarse/fine)-grain, (hetero/homo)geneous
- Environment: shared medium providing the surrounding conditions for agents to exist and act virtual/physical, passive/active, deterministic or not, ...
 - e.g., communication and coordination infrastructure, topology of spatial domain, support of an action model

A set of autonomous agents **interacting with each other** within a shared environment, eventually under one to multiple organizations

- Agents: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them (soft/hard)ware, (coarse/fine)-grain, (hetero/homo)geneous
- Environment: shared medium providing the surrounding conditions for agents to exist and act virtual/physical, passive/active, deterministic or not, ...
 - e.g., communication and coordination infrastructure, topology of spatial domain, support of an action model
- Interaction: motor of dynamics and interoperability in the MAS

direct communicative / indirect actions through the environment

A set of autonomous agents interacting with each other within a shared environment, eventually under **one to multiple organizations**

- Agents: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them (soft/hard)ware, (coarse/fine)-grain, (hetero/homo)geneous
- Environment: shared medium providing the surrounding conditions for agents to exist and act virtual/physical, passive/active, deterministic or not, ...
 - e.g., communication and coordination infrastructure, topology of spatial domain, support of an action model
- Interaction: motor of dynamics and interoperability in the MAS

direct communicative / indirect actions through the environment

• Organization: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

pre-defined/emergent, static/adaptive, open/closed, ...

e.g., coordination and regulation activities

A set of autonomous agents interacting with each other within a shared environment, eventually under one to multiple organizations

A Multi-Agent System is more than a simple set of agents

- Agents: autonomous decision-making entities able to react to events while pursuing (pro-actively defined or delegated) goals and directing actions to achieve them (soft/hard)ware, (coarse/fine)-grain, (hetero/homo)geneous
- Environment: shared medium providing the surrounding conditions for agents to exist and act *virtual/physical, passive/active, deterministic or not, ...*

e.g., communication and coordination infrastructure, topology of spatial domain, support of an action model

• Interaction: motor of dynamics and interoperability in the MAS

direct communicative / indirect actions through the environment

• Organization: abstractions to declare and make accessible to agents their collective structure and functioning in a shared environment

pre-defined/emergent, static/adaptive, open/closed, ...

e.g., coordination and regulation activities

Multi-Agent-Based Simulation models used to describe and simulate complex systems, either natural or artificial, to analyze their properties

- Local representations of different points of view, decisions, goals, motivations, behaviors, etc.
- Interaction between local strategies, behaviors and global and common strategies of control
- Continuous operation and evolution
- Solution is the result of interaction between local processes

Multi-Agent-Based System Engineering models used to design and develop systems and applications

- Multi-* (sites, expertise, domains, points of view, decisions, goals, motivations, ...)
- Incremental and collaborative development
- Continuous execution and adaptation
- Increasingly user-centric

Multi-Agent Oriented Programming (MAOP)

- Aim at Engineering Systems
- Provide first-class abstractions to model and implement Agents, Environments, Interactions and Organization
- Integrate
 - AOP (Shoham, 1993)
 - EOP (Ricci et al., 2010)
 - IOP (Huhns, 2001)
 - OOP (Pynadath et al., 1999)

Example: Flexible Industrial Manufacturing

Domain problem ("lot-size-one manufacturing"): unique products at mass production costs

- customization is **expensive**: production lines are **optimized**, **inflexible**, and have **large lifespans** (> 30yr)
 - $\circ~$ we need production lines that can be repurposed on-the-fly

SIEMENS

Factory workers and artificial agents working towards shared goals

End-user programming for production engineers

(Ciortea et al., 2018)

Flexible Industrial Manufacturing

External Environment

Environment Dimension

CC () () BY SA

Agent Dimension

Organization Dimension

Interaction Dimension

JaCaMo Metamodel – Multi-Agent Concepts

Smart Room Scenario

Develop one room controller agent to manage a "Heating, Ventilating and Air Conditioning" (HVAC) device to reach a desired temperature based on agents' preferences acting on behalf of users

Smart Room Scenario

Develop one room controller agent to manage a "Heating, Ventilating and Air Conditioning" (HVAC) device to reach a desired temperature based on agents' preferences acting on behalf of users

Separation of concerns

- Integration and interoperability with the HVAC
 environment modeling
- Strategy to keep the right temperature
 - o agent modeling

Smart Room Scenario

References

- Ciortea, A., Mayer, S., & Michahelles, F. (2018). Repurposing manufacturing lines on the fly with multi-agent systems for the Web of Things. *Autonomous Agents and Multi-Agent Systems*.
- Huhns, M. N. (2001). Interaction-oriented programming. In *First international workshop, AOSE 2000 on Agent-oriented software engineering*, pp. 29–44, Secaucus, NJ, USA. Springer-Verlag New York, Inc.
- Pynadath, D. V., Tambe, M., Chauvat, N., & Cavedon. L. Toward team-oriented programming. In Nicholas R. Jennings and Yves Lespérance, editors, *ATAL*, LNCS, vol. 1757, pp. 233–247. Springer, 1999.
- Ricci, A., Piunti, M., & Viroli, M. (2010). Environment programming in multi-agent systems an artifact-based perspective. *Autonomous Agents and Multi-Agent Systems*.
- Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1):51–92.

